Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study on the operation and energy demand of dual-stage Metal Hydride Hydrogen Compressors under effective thermal management

Authors: Evangelos I. Gkanas; Emmanuel Stamatakis; Christodoulos N. Christodoulou; George Tzamalis; George Karagiorgis; Alexander Chroneos; Navaratnarajah Kuganathan; +2 Authors

Study on the operation and energy demand of dual-stage Metal Hydride Hydrogen Compressors under effective thermal management

Abstract

Abstract For the commercial viability of a hydrogen-based transportation, hydrogen infrastructure is key. One of the major issues of hydrogen infrastructure is related to the deployment and costs of the Hydrogen Refuelling Stations (HRSs), where up to 40% of the cost is related to hydrogen compression. The introduction of Metal Hydride Hydrogen Compressors (MHHCs) in the HRSs as compression elements is a potential technology to reduce operational costs, ensure noiseless operation and increase efficiency, if renewable-based thermal energy (and/or industrial waste heat) is supplied to the system. In this work, four different two-stage MHHCs are introduced and examined in terms of compression ratio, hydrogen flow rate (compression duration), thermal energy requirements and efficiency. In addition, for comparison purposes, a three-stage MHHC is also studied. The properties of five different materials are used for the individual compression stages of the MHHCs, where all the necessary thermodynamic properties are extracted experimentally and incorporated in a commercial Multiphysics software. The unsteady heat and mass transfer equations are employed for the development of the numerical model. The hydrogenation/dehydrogenation kinetics and the temperature profile were validated against solid experimental results. In addition, to improve and accelerate the storage/release kinetics, an internal thermal management scenario has been introduced. The results show that for compression at the temperature range of 10–90 °C, the most favourable two-stage compression case (Case 3) showed a compression ratio of 11.18 ÷ 1, an isentropic efficiency of 4.54% with a thermal energy demand of 322 kJ/molH2 and a cycle time of almost 34 min.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%