Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Extracellular sphingosine 1-phosphate stimulates formation of ethanolamine from phosphatidylethanolamine: modulation of sphingosine 1-phosphate-induced mitogenesis by ethanolamine

Authors: Zoltan Kiss; H. Wayne Anderson; S. Karan Crilly;

Extracellular sphingosine 1-phosphate stimulates formation of ethanolamine from phosphatidylethanolamine: modulation of sphingosine 1-phosphate-induced mitogenesis by ethanolamine

Abstract

In this work, we determined the effects of sphingosine 1-phosphate (S1P) on phospholipase D (PLD)-mediated hydrolysis of phosphatidylethanolamine (PtdEtn), and evaluated the effects of the water-soluble product ethanolamine on S1P-induced DNA synthesis in NIH 3T3 cells. In [14C]ethanolamine-labelled cells, S1P (0.5-5 μM) stimulated PLD-mediated hydrolysis of PtdEtn 1.5-2.1-fold. Down-regulation of protein kinase C by chronic (24 h) treatment of cells with 300 nM PMA, or pretreatments (10 min) with the cell-permeant calcium chelator 1,2-bis-(O-aminophenoxy)-ethane-N,N,Nʹ,Nʹ-tetra-acetic acid tetra-acetoxymethyl ester led to the inhibition of S1P-induced PtdEtn hydrolysis. S1P alone was a weak inducer of DNA synthesis, but its effects were enhanced by phosphocholine (PCho), insulin, ATP or PMA. Ethanolamine (5-100 μM) did not modify the mitogenic effect of S1P alone, whereas at 50-100 μM concentrations it actually enhanced the mitogenic effect of PCho via a mitogen-activated protein (MAP) kinase-independent mechanism. In contrast, 5-20 μM concentrations of ethanolamine, which correspond to normal blood ethanolamine levels in humans, strongly inhibited DNA synthesis induced by S1P plus PCho via a MAP kinase-dependent mechanism; importantly, less or no inhibition was observed with 50-100 μM concentrations of ethanolamine. At 5-50 μM concentrations, ethanolamine also inhibited the synergistic mitogenic effects of both S1P plus insulin (22-27% inhibition) and PCho plus ATP (45-73% inhibition) but not those of S1P plus PMA or S1P plus ATP. The results indicate that S1P stimulates PLD-mediated hydrolysis of PtdEtn by a mechanism that may involve a regulatory protein kinase C isoform. Increased formation of ethanolamine by PLD-mediated PtdEtn hydrolysis or by other means may be required for maximal stimulation of DNA synthesis by S1P in the presence of insulin, and particularly PCho.

Related Organizations
Keywords

Mitosis, Gene Expression Regulation, Enzymologic, Mice, Adenosine Triphosphate, Sphingosine, Phospholipase D, Animals, Insulin, Drug Interactions, Ethanolamine, Egtazic Acid, Flavonoids, Dose-Response Relationship, Drug, Hydrolysis, Phosphatidylethanolamines, 3T3 Cells, DNA, Phosphatidylcholines, Lysophospholipids, Mitogens

Powered by OpenAIRE graph
Found an issue? Give us feedback