
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data

Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data
Les forêts tropicales sont un élément clé du cycle mondial du carbone, et la cartographie de leur densité de carbone est essentielle pour comprendre les influences humaines sur le climat et pour les paiements basés sur les services écosystémiques pour la protection des forêts. Le balayage laser aéroporté à retour discret (ALS) est de plus en plus reconnu comme une technologie de haute qualité pour cartographier le carbone des forêts tropicales, car il génère des nuages ponctuels 3D de la structure forestière à partir desquels la densité de carbone au-dessus du sol (ACD) peut être estimée. Les modèles basés sur les zones sont à la pointe de la technologie lorsqu'il s'agit d'estimer l'ACD à partir des données de la SLA, mais ils rejettent les informations au niveau des arbres contenues dans le nuage de points de la SLA. Cet article compare des modèles basés sur la superficie et centrés sur les arbres pour estimer l'ACD dans les forêts anciennes des basses terres de Sabah, en Malaisie. Ces forêts sont difficiles à cartographier en raison de leur immense hauteur. Nous comparons la performance (a) d'un modèle basé sur la zone développé par Asner et Mascaro (2014), et utilisé principalement dans les néotropiques jusqu'à présent, avec (b) une approche centrée sur l'arbre qui utilise un nouvel algorithme (itcSegment) pour localiser les arbres dans le modèle de hauteur de la canopée de la SLA, mesure leur hauteur et la largeur de leur cime, et calcule la biomasse à partir de ces dimensions. Nous constatons que le modèle d'Asner et Mascaro nécessitait un étalonnage régional, reflétant la structure distinctive des forêts d'Asie du Sud-Est. Nous découvrons également que la surface terrière forestière est étroitement liée à la fraction de lacune de la canopée mesurée par la SLA, et nous utilisons cette découverte pour affiner le modèle d'Asner et Mascaro. Enfin, nous montrons que notre approche centrée sur l'arbre est moins précise pour estimer l'ACD que le modèle basé sur la zone le plus performant (RMSE 18% vs 13%). La modélisation centrée sur les arbres est attrayante car elle est basée sur la somme de la biomasse des arbres individuels, mais tant que les algorithmes ne pourront pas détecter les arbres du sous-étage de manière fiable et estimer la biomasse à partir des dimensions de la cime avec précision, la modélisation basée sur les zones restera la méthode de choix.
Los bosques tropicales son un componente clave del ciclo global del carbono, y el mapeo de su densidad de carbono es esencial para comprender las influencias humanas sobre el clima y para los pagos basados en servicios ecosistémicos para la protección de los bosques. El escaneo láser aéreo de retorno discreto (ALS) se reconoce cada vez más como una tecnología de alta calidad para mapear el carbono de los bosques tropicales, ya que genera nubes de puntos 3D de la estructura forestal a partir de las cuales se puede estimar la densidad de carbono sobre el suelo (ACD). Los modelos basados en áreas son de vanguardia cuando se trata de estimar la ACD a partir de datos de ALS, pero descartan la información a nivel de árbol contenida dentro de la nube de puntos de ALS. Este documento compara modelos basados en áreas y centrados en árboles para estimar la ACD en bosques antiguos de tierras bajas en Sabah, Malasia. Estos bosques son difíciles de mapear debido a su inmensa altura. Comparamos el rendimiento de (a) un modelo basado en áreas desarrollado por Asner y Mascaro (2014), y utilizado principalmente en los neotrópicos hasta ahora, con (b) un enfoque centrado en los árboles que utiliza un nuevo algoritmo (itcSegment) para localizar árboles dentro del modelo de altura del dosel de ALS, mide sus alturas y anchos de corona y calcula la biomasa a partir de estas dimensiones. Encontramos que el modelo de Asner y Mascaro necesitaba una calibración regional, lo que refleja la estructura distintiva de los bosques del sudeste asiático. También descubrimos que el área basal del bosque está estrechamente relacionada con la fracción de brecha del dosel medida por ALS, y utilizamos este hallazgo para refinar el modelo de Asner y Mascaro. Finalmente, mostramos que nuestro enfoque centrado en el árbol es menos preciso para estimar la ACD que el modelo basado en áreas de mejor rendimiento (RMSE 18% vs 13%). El modelado centrado en árboles es atractivo porque se basa en la suma de la biomasa de árboles individuales, pero hasta que los algoritmos puedan detectar árboles de sotobosque de manera confiable y estimar la biomasa a partir de las dimensiones de la corona con precisión, el modelado basado en áreas seguirá siendo el método de elección.
Tropical forests are a key component of the global carbon cycle, and mapping their carbon density is essential for understanding human influences on climate and for ecosystem-service-based payments for forest protection. Discrete-return airborne laser scanning (ALS) is increasingly recognised as a high-quality technology for mapping tropical forest carbon, because it generates 3D point clouds of forest structure from which aboveground carbon density (ACD) can be estimated. Area-based models are state of the art when it comes to estimating ACD from ALS data, but discard tree-level information contained within the ALS point cloud. This paper compares area-based and tree-centric models for estimating ACD in lowland old-growth forests in Sabah, Malaysia. These forests are challenging to map because of their immense height. We compare the performance of (a) an area-based model developed by Asner and Mascaro (2014), and used primarily in the neotropics hitherto, with (b) a tree-centric approach that uses a new algorithm (itcSegment) to locate trees within the ALS canopy height model, measures their heights and crown widths, and calculates biomass from these dimensions. We find that Asner and Mascaro's model needed regional calibration, reflecting the distinctive structure of Southeast Asian forests. We also discover that forest basal area is closely related to canopy gap fraction measured by ALS, and use this finding to refine Asner and Mascaro's model. Finally, we show that our tree-centric approach is less accurate at estimating ACD than the best-performing area-based model (RMSE 18% vs 13%). Tree-centric modelling is appealing because it is based on summing the biomass of individual trees, but until algorithms can detect understory trees reliably and estimate biomass from crown dimensions precisely, areas-based modelling will remain the method of choice.
تعد الغابات المدارية مكونًا رئيسيًا في دورة الكربون العالمية، ويعد تحديد كثافتها الكربونية أمرًا ضروريًا لفهم التأثيرات البشرية على المناخ والمدفوعات القائمة على خدمة النظام الإيكولوجي لحماية الغابات. يتم التعرف بشكل متزايد على المسح بالليزر المحمول جواً ذي العائد المنفصل (ALS) كتقنية عالية الجودة لرسم خرائط لكربون الغابات الاستوائية، لأنه يولد غيومًا نقطية ثلاثية الأبعاد لهيكل الغابات يمكن من خلالها تقدير كثافة الكربون فوق الأرض (ACD). تعد النماذج القائمة على المناطق من أحدث التقنيات عندما يتعلق الأمر بتقدير ACD من بيانات ALS، ولكن تجاهل المعلومات على مستوى الأشجار الموجودة في سحابة نقطة ALS. تقارن هذه الورقة النماذج القائمة على المناطق والمتمحورة حول الأشجار لتقدير ACD في غابات النمو القديمة في الأراضي المنخفضة في صباح، ماليزيا. يصعب رسم خرائط لهذه الغابات بسبب ارتفاعها الهائل. نقارن أداء (أ) نموذج قائم على المنطقة طوره أسنر وماسكارو (2014)، ويستخدم بشكل أساسي في المناطق المدارية الحديثة حتى الآن، مع (ب) نهج يركز على الأشجار يستخدم خوارزمية جديدة (itcSegment) لتحديد موقع الأشجار داخل نموذج ارتفاع مظلة ALS، ويقيس ارتفاعاتها وعرض تاجها، ويحسب الكتلة الحيوية من هذه الأبعاد. وجدنا أن نموذج أسنر وماسكارو يحتاج إلى معايرة إقليمية، مما يعكس البنية المميزة لغابات جنوب شرق آسيا. نكتشف أيضًا أن المنطقة القاعدية للغابات ترتبط ارتباطًا وثيقًا بجزء فجوة المظلة الذي يقيسه التصلب الجانبي الضموري، ونستخدم هذه النتيجة لتحسين نموذج أسنر وماسكارو. أخيرًا، نظهر أن نهجنا المتمحور حول الأشجار أقل دقة في تقدير ACD من النموذج القائم على المنطقة الأفضل أداءً (RMSE 18 ٪ مقابل 13 ٪). تعد النمذجة التي تتمحور حول الأشجار جذابة لأنها تستند إلى جمع الكتلة الحيوية للأشجار الفردية، ولكن حتى تتمكن الخوارزميات من اكتشاف أشجار الطوابق السفلية بشكل موثوق وتقدير الكتلة الحيوية من أبعاد التاج بدقة، ستظل النمذجة القائمة على المناطق هي الطريقة المفضلة.
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- University College London United Kingdom
- University of Leeds, School of Geography United Kingdom
- Fondazione Edmund Mach Italy
- UK Centre for Ecology & Hydrology United Kingdom
Technology, aboveground carbon density, Tropical forests, QH301 Biology, Tree Height Estimation, SEGMENTATION, CROWN DELINEATION, 910, NE/K016377/1, Estimation of Forest Biomass and Carbon Stocks, STEM VOLUME, Image analysis, Basal area, Remote Sensing, Agricultural and Biological Sciences, SDG 13 - Climate Action, Pathology, Saproxylic Insect Ecology and Forest Management, Laser scanning, tropical forests, Geography, Global Forest Mapping, Physics, Life Sciences, Geology, Forestry, Biomass estimation, Tree delineation, Remote sensing, Tree canopy, 004, power-law, Archaeology, Tree Allometry, Physical Sciences, Tree (set theory), Medicine, Mapping Forests with Lidar Remote Sensing, Tree Height-Diameter Models, Life Sciences & Biomedicine, Biomass Estimation, Vegetation (pathology), TROPICAL FOREST, FOOTPRINT LIDAR, LiDAR, Environmental Engineering, Soil Science, Laser, Environmental Sciences & Ecology, 530, Mathematical analysis, 333, Ecology and Environment, object recognition, Environmental science, tree delineation, QH301, image analysis, Settore BIO/07 - ECOLOGIA, Aboveground carbon density, allometry, biomass estimation, FOS: Mathematics, Computers in Earth Sciences, Imaging Science & Photographic Technology, Nature and Landscape Conservation, FORM LIDAR DATA, Allometry, Science & Technology, INDIVIDUAL TREES, ABOVEGROUND BIOMASS ESTIMATION, Natural Environment Research Council (NERC), Power-law, FOS: Environmental engineering, Canopy, Optics, Object recognition, SPECIES CLASSIFICATION, Computer science, HYPERSPECTRAL DATA, Point cloud, Insect Science, Environmental Science, Computer vision, Environmental Sciences, Mathematics
Technology, aboveground carbon density, Tropical forests, QH301 Biology, Tree Height Estimation, SEGMENTATION, CROWN DELINEATION, 910, NE/K016377/1, Estimation of Forest Biomass and Carbon Stocks, STEM VOLUME, Image analysis, Basal area, Remote Sensing, Agricultural and Biological Sciences, SDG 13 - Climate Action, Pathology, Saproxylic Insect Ecology and Forest Management, Laser scanning, tropical forests, Geography, Global Forest Mapping, Physics, Life Sciences, Geology, Forestry, Biomass estimation, Tree delineation, Remote sensing, Tree canopy, 004, power-law, Archaeology, Tree Allometry, Physical Sciences, Tree (set theory), Medicine, Mapping Forests with Lidar Remote Sensing, Tree Height-Diameter Models, Life Sciences & Biomedicine, Biomass Estimation, Vegetation (pathology), TROPICAL FOREST, FOOTPRINT LIDAR, LiDAR, Environmental Engineering, Soil Science, Laser, Environmental Sciences & Ecology, 530, Mathematical analysis, 333, Ecology and Environment, object recognition, Environmental science, tree delineation, QH301, image analysis, Settore BIO/07 - ECOLOGIA, Aboveground carbon density, allometry, biomass estimation, FOS: Mathematics, Computers in Earth Sciences, Imaging Science & Photographic Technology, Nature and Landscape Conservation, FORM LIDAR DATA, Allometry, Science & Technology, INDIVIDUAL TREES, ABOVEGROUND BIOMASS ESTIMATION, Natural Environment Research Council (NERC), Power-law, FOS: Environmental engineering, Canopy, Optics, Object recognition, SPECIES CLASSIFICATION, Computer science, HYPERSPECTRAL DATA, Point cloud, Insect Science, Environmental Science, Computer vision, Environmental Sciences, Mathematics
10 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).155 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
