Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Rothamsted Repositor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Soil and Tillage Research
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain

Authors: Zhang, X.; Sun, Z.; Liu, J.; Ouyang, Z.; Wu, L.;

Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain

Abstract

Accurate modeling of tillage impacts on the cycling of soil carbon (C) and nitrogen (N) and greenhouse gas (GHG) emissions is complicated due to the differences in soil organic matter decomposition, water holding capacity and soil temperature between different tillage systems. In the current study, the SPACSYS (Soil-Plant-Atmosphere Continuum System), a process-based model, was used to simulate the effects of two different tillage regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (TN) stocks from 2003 to 2009, and soil CO2 and N2O emissions from 2003 to 2007. The study was based on a long-term tillage experiment with a winter wheat (Triticum Aestivium L.) and summer maize (Zea mays L.) system in Calcaric Fluvisols (FAO) soil in the North China Plain. Farmers’ conventional tillage (CT), which is a predominant tillage method in the region, was used to compare with no-till (NT), an emerging technique for land conservation. In both treatments, chemical N fertilizer (F) was applied and crop straw (R) was incorporated in two field soils after harvest (no-till: NT-R-F; conventional tillage: CT-R-F). Statistical analyses indicated that the SPACSYS model reasonably simulated the maize yield under both NT-R-F and CT-R-F, but overestimated the wheat yield under NT-R-F by approximately 15%. In addition, the dynamics of SOC and TN stocks (0–10 cm soil depth) and soil CO2 and N2O emissions under both NT-R-F and CT-R-F were accurately simulated by the SPACSYS model. The simulations showed that NT-R-F significantly increased SOC and TN stocks at 0–10 cm soil depth, but not the wheat and maize yields compared to CT-R-F. Furthermore, NT-R-F reduced both soil CO2 and N2O emissions (P < .05) compared to CT-R-F. Our results also showed that NT-R-F led to greater C (3755 ± 942 kg C ha−1 yr−1) and N gains (179.8 ± 90.7 kg N ha−1 yr−1) in the plant and upper 20 cm depth of soil system than CT-R-F. In conclusion, the SPACSYS model can accurately simulate the processes of C and N cycles as affected by both conventional tillage and no-till systems in the North-China-Plain. Further studies need to focus on optimizing the rates of N fertilizer input and straw incorporation along with no-till to maintain the crop yield while reducing C and N losses to the environment.

Country
United Kingdom
Keywords

Crop yield; Soil fertility; No tillage; Greenhouse gases; SPACSYS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green