
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach

Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach
Abstract As the increasing energy demand and rapid depletion of conventional fossil fuel resources, renewable energy has caused great attention of the public. The main drawback of the renewable resources is their unpredictable nature. A hybrid renewable energy system (HRES) that integrates different resources in proper combination is a promising solution to overcome this challenge. In this context, the preference-inspired coevolutionary algorithm (PICEA) has been applied for the first time to the design of multi-objective hybrid renewable energy system. We propose an enhanced fitness assignment method to improve the preference-inspired coevolutionary algorithm using goal vectors (PICEA-g) in the optimization process minimizing, simultaneously, the annualized cost of system (ACS), the loss of power supply probability (LPSP) and the fuel emissions. As an example of application, a stand-alone hybrid system including PV panels, wind turbines, batteries and diesel generators has been designed to find the best combination of components, achieving a set of non-dominated solutions from which the decision maker can select a most adequate one.
- National University of Defense Technology China (People's Republic of)
- National University of Defense Technology China (People's Republic of)
12 Research products, page 1 of 2
- 2013IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).120 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
