Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Colloid a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization

Authors: Yuan Liao; Wencai Wang; Liqun Zhang; Yi Jiang; Hua Zou; Ming Tian;

Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization

Abstract

A facile method was developed to prepare silica-silver core-shell composite microspheres with continuous, compact, and conductive silver layers. The procedure involves dopamine oxidative self-polymerization and electroless plating. The poly(dopamine) layer was used as the chemi-sorption sites for silver ions and promoted the silver deposition. The electroless plating procedure involves a combination of surface activation, seeding growth, and deposition. The chemical composition and the crystal structure of the silica-silver core-shell composite microspheres were studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. In addition, the surface morphology and chemical composition of each composite microsphere were confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results demonstrated that the silver layer on the silica surface was continuous and compacted.

Related Organizations
Keywords

Silver, Biomimetic Materials, Biomimetics, Surface Properties, Animals, Silicon Dioxide, Microspheres, Bivalvia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 1%