Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Biogeosciences
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements

Authors: Edward A. G. Schuur; Edward A. G. Schuur; Gerardo Celis; Gerardo Celis; Rosvel Bracho; Susan M. Natali; Marguerite Mauritz; +5 Authors

Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements

Abstract

AbstractCurrent and future warming of high‐latitude ecosystems will play an important role in climate change through feedbacks to the global carbon cycle. This study compares 6 years of CO2 flux measurements in moist acidic tundra using autochambers and eddy covariance (Tower) approaches. We found that the tundra was an annual source of CO2 to the atmosphere as indicated by net ecosystem exchange using both methods with a combined mean of 105 ± 17 g CO2 C m−2 y−1 across methods and years (Tower 87 ± 17 and Autochamber 123 ± 14). The difference between methods was largest early in the observation period, with Autochambers indicated a greater CO2 source to the atmosphere. This discrepancy diminished through time, and in the final year the Autochambers measured a greater sink strength than tower. Active layer thickness was a significant driver of net ecosystem carbon exchange, gross ecosystem primary productivity, and Reco and could account for differences between Autochamber and Tower. The stronger source initially attributed lower summer season gross primary production (GPP) during the first 3 years, coupled with lower ecosystem respiration (Reco) during the first year. The combined suppression of GPP and Reco in the first year of Autochamber measurements could be the result of the experimental setup. Root damage associated with Autochamber soil collar installation may have lowered the plant community's capacity to fix C, but recovered within 3 years. While this ecosystem was a consistent CO2 sink during the summer, CO2 emissions during the nonsummer months offset summer CO2 uptake each year.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
bronze