
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Regional Climate Change Recorded in Moss Oxygen and Carbon Isotopes from a Late Holocene Peat Archive in the Western Antarctic Peninsula

Regional Climate Change Recorded in Moss Oxygen and Carbon Isotopes from a Late Holocene Peat Archive in the Western Antarctic Peninsula
The Antarctic Peninsula (AP) climate is characterized by a high degree of variability, which poses a problem when attempting to put modern change in the context of natural variation. Therefore, novel methods are required to disentangle sometimes conflicting climate records from the region. In recent years, the development of Antarctic moss-cellulose isotopes as a proxy for summer terrestrial growing conditions has become more widespread, with the isotopes Δ13C and δ18O reflecting moss productivity and peatbank moisture conditions, respectively. Here, we used a combined Δ13C and δ18O isotope analysis of moss Chorisodontium aciphyllum cellulose from a peatbank located on Litchfield Island in the western AP to document changes in climate over the last 1700 years. High Δ13C values (>15‰) indicate warm and productive conditions on Litchfield Island from 1600 to 1350 cal yr BP (350 to 600 AD) and over the last 100 years. The δ18O record shows two distinct intervals of dry conditions at 1350–1000 cal yr BP (600–950 AD) and at 500–0 cal yr BP (1450–1950 AD). Our record indicates that terrestrial ecosystems in the AP have responded to regional climate driven by atmospheric circulation, such as the southern annular mode (SAM) and, to a lesser extent, changes in ocean circulation.
- Lehigh University United States
- Lehigh University United States
QE1-996.5, <i>Chorisodontium aciphyllum</i>, stable isotopes, temperature, Geology, hydroclimate, Antarctic Peninsula, paleoclimate
QE1-996.5, <i>Chorisodontium aciphyllum</i>, stable isotopes, temperature, Geology, hydroclimate, Antarctic Peninsula, paleoclimate
15 Research products, page 1 of 2
- 1981IsAmongTopNSimilarDocuments
- 1986IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 1980IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
