
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental analysis of the effective thermal conductivity enhancement of PCM using finned tubes in high temperature bulk tanks

handle: 10459.1/64630
Experimental analysis of the effective thermal conductivity enhancement of PCM using finned tubes in high temperature bulk tanks
Solar cooling is a promising solution to overcome the high energy demand of buildings. Nevertheless, the time dependent nature of the solar source leads to the need of storage systems in order to better match the energy demand and supply. For this purpose, thermal energy storage was considered during last decades as the optimal solution at commercial scale. Latent thermal energy storage offers higher energy densities together with more constant outlet temperature than sensible heat storage, but the low thermal conductivities of PCMs represents the main drawback which limits its applicability. Several studies based on heat transfer enhancement techniques applied in latent thermal energy storage have already been performed. Specifically, the technique of adding fins in storage tanks, which is the most known and studied. However, there are few experimental studies at pilot plant scale focused on this technique and less on the analysis of the heat transfer enhancement through the parameter effective thermal conductivity. This paper presents an experimental study where this parameter is determined and compared using of two identical latent storage tanks, one with 196 transversal squared fins and another one without fins. In this case, hydroquinone was selected as PCM. A set of six experiments was performed at pilot plant of the University of Lleida (Spain), combining three different HTF flow rates and two temperature gradients between HTF inlet temperature and initial PCM temperature. Experimental results showed that the addition of fins can increase the effective thermal conductivity between 4.11% and 25.83% comparing the experiment with highest and lowest thermal power supplied to the PCM, respectively. The work was partially funded by the Spanish government (ULLE10-4E-1305 and ENE2015-64117-C5-1-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2017 SGR 1537). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia.
- Massachusetts Institute of Technology United States
- University of Lleida Spain
- Adria Airways Slovenia
- University of Lleida Spain
- Adria Airways Slovenia
Solar cooling, Thermal energy storage, Storage tank with fins, Effective thermal conductivity, Phase change material
Solar cooling, Thermal energy storage, Storage tank with fins, Effective thermal conductivity, Phase change material
2 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
