Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Osuva (University of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid stochastic/robust optimization model for resilient architecture of distribution networks against extreme weather conditions

Authors: Shahbazi, Amid; Aghaei, Jamshid; Pirouzi, Sasan; Shafie-khah, Miadreza; Catalão; João P.S.;

Hybrid stochastic/robust optimization model for resilient architecture of distribution networks against extreme weather conditions

Abstract

Abstract This paper expresses the planning model of the backup distributed generation (DG) and lines hardening and tie lines in distribution networks according to resilient architecture (RA) strategy under natural disaster conditions such as earthquakes and floods. Indeed, the proposed deterministic problem of resilient distribution system planning considers the minimization of the daily investment, operation and resiliency (repair and load shedding) costs as objective functions subject to constraints of AC power flow equations, system operation limits, planning and operation model of backup DG and hardening and tie lines, as well as network reconfiguration formulation. The problem formulation is based on a mixed integer non-linear programming (MINLP) model, which is converted to a mixed integer linear programming (MILP) model on the basis of Benders decomposition (BD) approach using linearization approaches to achieve the optimal solution with the lower computational efforts and error. Besides, a hybrid stochastic/robust optimization (HSRO) based on the bounded uncertainty-based robust optimization (BURO) and a scenario-based stochastic optimization is used to model the uncertainties of load, energy price and availability of the network equipment under the extreme weather conditions. Finally, the proposed RA strategy is applied on 33-bus and 119-bus distribution test systems to investigate its capabilities in different case studies.

Country
Finland
Keywords

Hardening and tie lines, ta222, Hybrid stochastic/robust 27 optimization, Resilient architecture, fi=Sähkötekniikka|en=Electrical Engineering|, 510, Backup distributed generation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 1%
gold