Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Communicati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Communications
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RAST: Rapid and energy-efficient network formation in TSCH-based Industrial Internet of Things

Authors: Mohamed Mohamadi; Badis Djamaa; Mustapha Reda Senouci;

RAST: Rapid and energy-efficient network formation in TSCH-based Industrial Internet of Things

Abstract

Abstract The Time Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4 standard is expected to revolutionize the Industrial Internet of Things. Indeed, it can achieve high reliability and deterministic latency with a very low duty cycle. Nevertheless, forming a TSCH network with the standard approach might not be as efficient, constituting, thus, one of the TSCH’s major issues. Such a network formation process relies on nodes passively scanning for advertised Enhanced Beacon (EB) frames to join the network. Doing so, a node wishing to join a TSCH network may stay awake randomly scanning for EBs for a considerable period of time, leading to a lengthy formation process with excessive energy consumption. To deal with these issues, this paper presents a practical and effective Radio duty-cycled, Active-Scan based network formation process for TSCH networks (RAST). Our proposal leans on active-scan procedures combined with radio duty cycling mechanisms to shorten joining delays and reduce energy consumption. Obtained results from extensive and realistic simulations show that our solution is efficient and outperforms state-of-the-art solutions, regarding the association time and energy consumption by up to two orders of magnitude.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%