
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development of a High Temperature Oxidation Mechanism for Bio-Aviation Fuels
Development of a High Temperature Oxidation Mechanism for Bio-Aviation Fuels
Almost all current civil and military aviation around the world use a kerosene-type fuel. However one of the alternatives is to use a mixture of petrochemicals and biofuel, especially methyl esters derived from vegetable oil (Fatty Acid Methyl Esters, FAMEs) that given their properties appear to be one of the most suitable for Aviation fuels. Studies were conducted to develop a fundamental and detailed reaction mechanism for the combustion of bio-aviation fuel through a combination of the existing kerosene based reaction mechanism developed previously by the authors (Aviation Fuel Reaction Mechanism v1.1), along with published chemical kinetic mechanisms for methylbutanoate (MB). Methylbutanoate is the simplest FAME that exhibits similar patterns of reactivity to FAME’s of longer carbon chain length typical of those derived from vegetable oils, furthermore it has been the subject of several studies to provide chemical kinetic mechanisms to predict its oxidation behavior. Evaluations of the combined reaction mechanism have been performed using CHEMKIN™ and similar software simulating high temperature/pressure conditions. A comparison between the oxidation processes of the Kerosene and Bio-Aviation fuel was carried out, along with sensitivity analysis to provide insight into some of the differences observed. A similar behaviour was observed for blends of 20%MB/80%Kerosene in the combustion conditions studied, indicating that combustion in current aircraft engines would not be adversely affected by using such a blend.
- University of Leeds United Kingdom
6 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
