Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiscale Assessment of Agricultural Consumptive Water Use in California's Central Valley

Authors: A. J. Wong; Y. Jin; J. Medellín‐Azuara; K. T. Paw U; E. R. Kent; J. M. Clay; F. Gao; +7 Authors

Multiscale Assessment of Agricultural Consumptive Water Use in California's Central Valley

Abstract

AbstractSpatial estimates of crop evapotranspiration with high accuracy from the field to watershed scale have become increasingly important for water management, particularly over irrigated agriculture in semiarid regions. Here, we provide a comprehensive assessment on patterns of annual agricultural water use over California's Central Valley, using 30‐m daily evapotranspiration estimates based on Landsat satellite data. A semiempirical Priestley‐Taylor approach was locally optimized and cross‐validated with available field measurements for major crops including alfalfa, almond, citrus, corn, pasture, and rice. The evapotranspiration estimates explained >70% variance in daily measurements from independent sites with an RMSE of 0.88 mm day−1. When aggregated over the Valley, we estimated an average evapotranspiration of 820 ± 290 mm yr−1 in 2014. Agricultural water use varied significantly across and within crop types, with a coefficient of variation ranging from 8% for Rice (1,110 ± 85 mm yr−1) to 59% for Pistachio (592 ± 352 mm yr−1). Total water uses in 2016 increased by 9.6%, as compared to 2014, mostly because of land‐use conversion from fallow/idle land to cropland. Analysis across 134 Groundwater Sustainability Agencies (GSAs) further showed a large variation of agricultural evapotranspiration among and within GSAs, especially for tree crops, e.g., almond evapotranspiration ranging from 339 ± 80 mm yr−1 in Tracy to 1,240 ± 136 mm yr−1 in Tri‐County Water Authority. Continuous monitoring and assessment of the dynamics and spatial heterogeneity of agricultural evapotranspiration provide data‐driven guidance for more effective land use and water planning across scales.

Country
United States
Keywords

crop water consumptive use, Environmental Engineering, 330, Life on Land, precision irrigation, Environmental engineering, AmeriFlux, Civil Engineering, 333, 630, Physical Geography and Environmental Geoscience, Engineering, Civil engineering, surface energy balance, Geomatic Engineering, latent heat flux, Zero Hunger, Hydrology, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
hybrid