Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
B2FIND
Dataset . 2018
Data sources: B2FIND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
B2FIND
Dataset . 2017
Data sources: B2FIND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EASY
Dataset . 2018
Data sources: EASY
DRYAD
Dataset . 2018
License: CC 0
Data sources: Datacite
DRYAD
Dataset . 2017
License: CC 0
Data sources: Datacite
DRYAD
Dataset . 2017
License: CC 0
Data sources: Datacite
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Intraspecific variation in climate-relevant traits in a tropical rainforest lizard

Authors: Llewelyn, John; Macdonald, Stewart L.; Hatcher, Amberlee; Moritz, Craig; Phillips, Ben L.;

Data from: Intraspecific variation in climate-relevant traits in a tropical rainforest lizard

Abstract

Aim The exceptionally rich biodiversity found in tropical rainforest is under threat from anthropogenic climate change. We recognize the threat, yet we have little knowledge of the capacity of tropical species to adjust their climate sensitivity in response to it. One indicator of a species’ capacity to adjust to different climates is the amount of intraspecific variation observed in its climate-relevant traits; if a climate-relevant trait varies, and this variation is correlated with local climates, it suggests the species can adjust the trait to different conditions through either phenotypic plasticity or evolutionary adaptation. Here, we test for intraspecific variation in climate-relevant traits in a rainforest specialist to shed light on the capacity of such species to adjust to different climates. Location The Wet Tropics Bioregion, Australia. Methods We studied 12 populations of a lizard that is a tropical rainforest specialist, the rainforest sunskink (Lampropholis coggeri), testing for intraspecific variation in four traits that are potentially important in determining a species’ climate sensitivity. The measured traits were as follows: critical thermal minimum, critical thermal maximum, thermal optimum for sprinting, and desiccation rate. Results We found substantial variation both through time and across space in the measured traits, suggesting both strong plasticity and substantial geographic variation. Moreover, trait variation was correlated with local climate variables, suggesting variation reflects adjustment to local conditions. Main conclusions If physiological lability similar to that observed in rainforest sunskinks occurs in tropical rainforest species more generally, these taxa may not be as climatically specialized, and so not as vulnerable to climate change, as previously thought.

Intraspecific variation dataData on CTmin, CTmax, Topt and desiccation rate for rainforest sunskinks from numerous populations, as well as environmental variables for each population/collection groupDiversity and Distribution data.xls

Keywords

medicine and health care, Life sciences, medicine and health care , Life Sciences, Medicine, Life sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
  • 2
    views
    Data sourceViewsDownloads
    ZENODO20
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
1
Average
Average
Average
2