
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3

A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3
Abstract The characteristics of sulfated V2O5/TiO2 honeycomb catalyst from metatitanic acid (MTA) were studied in the practical conditions of pilot plant using high dust flue gas from coal fired utility boiler. The effects of reaction temperature, NH3/NO mole ratio, space velocity and operation time on the reduction of nitric oxide (NO) were mainly investigated for engineering application. The catalyst showed high NO reduction of about 90% at a space velocity of 4000 h−1, NH3/NO mole ratio of 1.0 and reaction temperature of 300–400 °C. The efficiency of this catalyst remained constant during the present experiment of 2400 h and the erosion by fly ash was lower than that of the commercial catalysts. These results clearly demonstrate the high potential for this catalyst to be applied commercially for the control of NOx emissions from coal fired utility boiler.
- Hanyang University Korea (Republic of)
- Hanyang University Korea (Republic of)
- Electric Power Research Institute United States
- Electric Power Research Institute United States
7 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
