
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Method for Analyzing 100% Renewable and Sector-coupled Sub-national Energy Systems–Case Study of Schleswig-Holstein
A Novel Method for Analyzing 100% Renewable and Sector-coupled Sub-national Energy Systems–Case Study of Schleswig-Holstein
The energy transition requires integration of different energy carriers, including electricity, heat, and transport sectors. Energy modeling methods and tools are essential to provide a clear insight into the energy transition. However, the methodologies often overlook the details of small-scale energy systems. The study states an innovative approach to facilitate sub-national energy systems with 100% renewable penetration and sectoral integration. An optimization model, OSeEM-SN, is developed under the Oemof framework. The model is validated using the case study of Schleswig-Holstein. The study assumes three scenarios representing 25%, 50%, and 100% of the total available biomass potentials. OSeEM-SN reaches feasible solutions without additional offshore wind investment, indicating that they can be reserved for supplying other states’ energy demand. The annual investment cost varies between 1.02 bn – 1.44 bn €/yr for the three scenarios. The electricity generation decreases by 17%, indicating that with high biomass-based combined heat and power plants, the curtailment from other renewable plants can be decreased. Ground source heat pumps dominate the heat mix; however, their installation decreases by 28% as the biomass penetrates fully into the energy mix. The validation confirms OSeEM-SN as a beneficial tool to examine different scenarios for sub-national energy systems.
- University of Flensburg Germany
energy_fuel_technology
energy_fuel_technology
11 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
