Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.mdpi.com...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.mdpi.com/2071-1050...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.20944/prepr...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Method for Analyzing 100% Renewable and Sector-coupled Sub-national Energy Systems–Case Study of Schleswig-Holstein

Authors: Md. Nasimul Islam Maruf;

A Novel Method for Analyzing 100% Renewable and Sector-coupled Sub-national Energy Systems–Case Study of Schleswig-Holstein

Abstract

The energy transition requires integration of different energy carriers, including electricity, heat, and transport sectors. Energy modeling methods and tools are essential to provide a clear insight into the energy transition. However, the methodologies often overlook the details of small-scale energy systems. The study states an innovative approach to facilitate sub-national energy systems with 100% renewable penetration and sectoral integration. An optimization model, OSeEM-SN, is developed under the Oemof framework. The model is validated using the case study of Schleswig-Holstein. The study assumes three scenarios representing 25%, 50%, and 100% of the total available biomass potentials. OSeEM-SN reaches feasible solutions without additional offshore wind investment, indicating that they can be reserved for supplying other states’ energy demand. The annual investment cost varies between 1.02 bn – 1.44 bn €/yr for the three scenarios. The electricity generation decreases by 17%, indicating that with high biomass-based combined heat and power plants, the curtailment from other renewable plants can be decreased. Ground source heat pumps dominate the heat mix; however, their installation decreases by 28% as the biomass penetrates fully into the energy mix. The validation confirms OSeEM-SN as a beneficial tool to examine different scenarios for sub-national energy systems.

Related Organizations
Keywords

energy_fuel_technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green