

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Description and Demonstration of the Coupled Community Earth System Model v2 – Community Ice Sheet Model v2 (CESM2‐CISM2)

Description and Demonstration of the Coupled Community Earth System Model v2 – Community Ice Sheet Model v2 (CESM2‐CISM2)
AbstractEarth system/ice‐sheet coupling is an area of recent, major Earth System Model (ESM) development. This work occurs at the intersection of glaciology and climate science and is motivated by a need for robust projections of sea‐level rise. The Community Ice Sheet Model version 2 (CISM2) is the newest component model of the Community Earth System Model version 2 (CESM2). This study describes the coupling and novel capabilities of the model, including: (1) an advanced energy‐balance‐based surface mass balance calculation in the land component with downscaling via elevation classes; (2) a closed freshwater budget from ice sheet to the ocean from surface runoff, basal melting, and ice discharge; (3) dynamic land surface types; and (4) dynamic atmospheric topography. The Earth system/ice‐sheet coupling is demonstrated in a simulation with an evolving Greenland Ice Sheet (GrIS) under an idealized high CO2 scenario. The model simulates a large expansion of ablation areas (where surface ablation exceeds snow accumulation) and a large increase in surface runoff. This results in an elevated freshwater flux to the ocean, as well as thinning of the ice sheet and area retreat. These GrIS changes result in reduced Greenland surface albedo, changes in the sign and magnitude of sensible and latent heat fluxes, and modified surface roughness and overall ice sheet topography. Representation of these couplings between climate and ice sheets is key for the simulation of ice and climate interactions.
- Delft University of Technology Netherlands
- University of Colorado Boulder United States
- University Corporation for Atmospheric Research United States
- University Corporation For Atmospheric Res United States
- National Center for Atmospheric Research United States
Physical geography, 550, 290, GC1-1581, Oceanography, ice sheet modeling, GB3-5030, model coupling, Earth system modeling, Research Article
Physical geography, 550, 290, GC1-1581, Oceanography, ice sheet modeling, GB3-5030, model coupling, Earth system modeling, Research Article
28 Research products, page 1 of 3
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 8 download downloads 6 - 8views6downloads
Data source Views Downloads TU Delft Repository 8 6


