
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermomechanical Characterization of Blended Biomass-Coal Ash Waste Materials

Thermomechanical Characterization of Blended Biomass-Coal Ash Waste Materials
The combustion of biomass for energy generation is practiced in an increasing scale in Indonesia as the country heads towards the long-term national energy mix targeted by 2025. However, biomass combustion is prone to operational problems caused by the generally low-melting nature of biomass ashes. This work discusses the effects of co-combusting coal with POEFB (palm oil empty fruit bunch) and bamboo with respect to the thermomechanical behavior of the produced ashes. Coal is observed to increase the ash fusion temperatures (AFT) of neat and combined POEFB and bamboo ashes by as much as 300 °C. Aluminosilicate minerals in the coal combine with potassium in the biomass during co-combustion, producing high-melting K-aluminosilicates. A linear correlation is identified between measured AFT and ash liquidus temperatures estimated by FactSage thermochemistry calculation software, enabling the prediction of AFT of coal-biomass co-combustion systems.
- Bandung Institute of Technology Indonesia
3 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
