
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Solving Challenges of Assimilating Microwave Remote Sensing Signatures With a Physical Model to Estimate Snow Water Equivalent

Solving Challenges of Assimilating Microwave Remote Sensing Signatures With a Physical Model to Estimate Snow Water Equivalent
AbstractGlobal monitoring of seasonal snow water equivalent (SWE) has advanced significantly over the past decades. However, challenges remain when estimating SWE from passive and active microwave signatures, because a priori characterization of snow properties is required for SWE retrievals. Numerical experiments have shown that utilizing physical snow models to acquire snowpack characterization can potentially improve microwave‐based SWE retrievals. This study aims to identify the challenges of assimilating active and passive microwave signatures with physical snow models, and to examine solutions to those challenges. Guided by observations from a point‐based study, we designed a sensitivity experiment to quantify the effects of changes in the physically modeled SWE—and of corresponding changes to other snowpack properties—to the microwave‐based SWE retrievals. The results indicate that assimilating microwave signatures with physical snow models face some critical challenges associated with the physical relationship between SWE and snow microstructure. We demonstrate these challenges can be overcome if the microwave algorithms account for these relationships.
Research Article
Research Article
12 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
