
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Growth Pattern and Functional Morphology of the Cervical Vertebrae in the Gerenuk (Litocranius walleri): The Evolution of Neck Elongation in Antilopini (Bovidae, Artiodactyla)

Growth Pattern and Functional Morphology of the Cervical Vertebrae in the Gerenuk (Litocranius walleri): The Evolution of Neck Elongation in Antilopini (Bovidae, Artiodactyla)
Long necks have evolved independently in several different taxa, but the processes underlying the evolution of this trait are not yet fully understood. In this study, we examined the skeletal mechanism underlying the neck elongation in the tribe Antilopini (Bovidae, Artiodactyla). We calculated the growth patterns of the cervical vertebrae in the gerenuk (Litocranius walleri), which possesses the longest neck in this tribe, and compared it with those in two related species. The growth rates of the vertebrae were not significantly different between species, suggesting that the long neck of the gerenuk has resulted from the elongation of the cervical vertebrae during the fetal or juvenile stage. The morphology of the cervical vertebrae of gerenuks differed from that of the closely related, relatively long-necked dama gazelle (Nanger dama), with protrusions occurring on the dorsal surface of the ventral arch of the atlas. This implies that gerenuks possess a well-developed transverse ligament of the atlas that functions to hold the dens of the axis against the atlas. We also found that the atlas lies in close proximity to the neural spine of the axis in the gerenuk, suggesting that hyperextension of the atlantoaxial joint is osteologically limited in this species. While foraging on high foliage, gerenuks flex and extend their necks freely in a bipedal posture without moving their entire body. These morphological characteristics peculiar to the gerenuk enhance the rigidity of the atlantoaxial joint and decrease the risk of subluxation of the joint during this unique foraging behavior.
- University of Tokyo Japan
- Kyoto University Japan
15 Research products, page 1 of 2
- 2005IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 1970IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 1978IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
