Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum mechanical interpretation and analysis of perovskite material based single layer fuel cells (SLFCs)

Authors: Muhammad Sufyan Javed; Imran Shakir; Muhammad Ashfaq Ahmad; Rizwan Raza; Amjad Ali; Amjad Ali; Muhammad Khurram Qureshi; +2 Authors

Quantum mechanical interpretation and analysis of perovskite material based single layer fuel cells (SLFCs)

Abstract

Abstract Fossil fuels are unable to meet the current energy demands and polluting the environment with the emission of harmful gases. Therefore, clean energy technology is need of the modern era. One of the energy conversion devices is fuel cell which utilized fuel from renewable sources and convert into electricity in an efficient and clean way. However, for commercialization of this technology high operating temperature, degradation of electrodes and manufacture cost is the key challenges in conventional three layer fuel cell. Significant improvements have been made to reduce the cost and operating temperature by selecting suitable materials. Therefore, single layer fuel cell (SLFC) has been got much attention due to simple geometry. The mechanism inside the SLFC is still mystery which has been explained in this paper using quantum mechanical parameters like band gap and effect of particle size on charge transportation. In this research work, nanocomposite materials for single layer fuel cell have been synthesized by chemical routes. The x-ray diffraction shows the cubic perovskite structure with average crystallite size in the range of 23–37 nm. The particle size and surface area is found to be 23 nm and 86.42 m2 g−1, respectively. Raman spectrum of LBSCF-SDC shows a red shift compared to LBSCF and band gap of the composition 3LBSCF-7SDC is found to be 2.51 eV. Moreover, the conductivity of the sample 3LBSCF-7SDC has been found to be 0.02 Scm−1 at 750 °C. The quantum mechanical effects governing the working of single layer fuel cells are observed by different analyses. Photon confinement and Fano-Interactions phenomena resulted in a red shift using Raman analysis technique. The red shift in Raman spectrum is referred to a photon confined in a single layer fuel cell system. These effects are studied in single layer fuel cell for the first time with no previous analyses done in this newly field.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average