Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The 8.5Å Projection Structure of the Core RC–LH1–PufX Dimer of Rhodobacter sphaeroides

Authors: Per A. Bullough; C. Neil Hunter; Pu Qian;

The 8.5Å Projection Structure of the Core RC–LH1–PufX Dimer of Rhodobacter sphaeroides

Abstract

Two-dimensional crystals of dimeric photosynthetic reaction centre-LH1-PufX complexes have been analysed by cryoelectron microscopy. The 8.5A resolution projection map extends previous analyses of complexes within native membranes to reveal the alpha-helical structure of two reaction centres and 28 LH1 alphabeta subunits within the dimer. For the first time, we have achieved sufficient resolution to suggest a possible location for the PufX transmembrane helix, the orientation of the RC and the arrangement of helices within the surrounding LH1 complex. Whereas low-resolution projections have shown an apparent break in the LH1, our current map reveals a diffuse density within this region, possibly reflecting high mobility. Within this region the separation between beta14 of one monomer and beta2 of the other monomer is approximately 6A larger than the average beta-beta spacing within LH1; we propose that this is sufficient for exchange of quinol at the RC Q(B) site. We have determined the position and orientation of the RC within the dimer, which places its Q(B) site adjacent to the putative PufX, with access to the point in LH1 that appears most easily breached. PufX appears to occupy a strategic position between the mobile alphabeta14 subunit and the Q(B) site, suggesting how the structure, possibly coupled with a flexible ring, plays a role in optimizing quinone exchange during photosynthesis.

Related Organizations
Keywords

Models, Molecular, Protein Subunits, Bacterial Proteins, Protein Conformation, Cryoelectron Microscopy, Light-Harvesting Protein Complexes, Rhodobacter sphaeroides, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 10%
Top 1%