Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries

Authors: Jeffrey Read; Sheng S. Zhang; Xiaoming Ren;

Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries

Abstract

Abstract In this work we study heat-treated FeCu-phthalocyanine (FeCuPc) complexes as the catalyst for oxygen reduction in non-aqueous electrolyte Li/air cells by supporting the catalyst on a high surface area Ketjenblack EC-600JD carbon black. It is shown that the resultant FeCu/C catalyst not only accelerates the two-electron reduction of oxygen as “O 2 + 2Li + + 2e → Li 2 O 2 ”, but also catalyzes the chemical disproportionation of Li 2 O 2 as “2Li 2 O 2 → 2Li 2 O + O 2 ”. In Li/air cells, the catalyst reduces polarization on discharge while simultaneously reducing the fraction of Li 2 O 2 in the final discharged products. In a 0.2 mol kg −1 LiSO 3 CF 3 7:3 (wt.) propylene carbonate (PC)/tris(2,2,2-trifluoroethyl) phosphate (TFP) electrolyte, the Li/air cells with FeCu/C show at least 0.2 V higher discharge voltage at 0.2 mA cm −2 than those with pristine carbon. By measuring the charge-transfer resistance ( R ct ) of Li/air cells at temperatures ranging between −30 °C and 30 °C, we determine the apparent activation energy of the discharge of Li/air cells and discuss the effect of FeCu/C catalyst on the oxygen reduction in Li/air cells.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 1%