
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
CoCoNet: an efficient deep learning tool for viral metagenome binning

pmid: 33822891
CoCoNet: an efficient deep learning tool for viral metagenome binning
Abstract Motivation Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community’s genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community’s genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes. Results We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets. Availability and implementation CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings. Supplementary information Supplementary data are available at Bioinformatics online.
- University of Hawaiʻi Sea Grant United States
- Pacific University Oregon United States
- Pacific University Oregon United States
- Hawaii Pacific University United States
- Hawaii Pacific University United States
Deep Learning, Microbiota, Metagenome, Sequence Analysis, DNA, Metagenomics, Algorithms, Software
Deep Learning, Microbiota, Metagenome, Sequence Analysis, DNA, Metagenomics, Algorithms, Software
14 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
