Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Pharmaca...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Pharmacal Research
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

N-methyl amine-substituted fluoxetine derivatives: New dopamine transporter inhibitors

Authors: Churl K. Min; Sung-Hwa Yoon; Taesup Cho; Taesup Cho; Changho Lee; Young Sil Yoon;

N-methyl amine-substituted fluoxetine derivatives: New dopamine transporter inhibitors

Abstract

Transport of dopamine (DA) by the dopamine transporter from the synaptic cleft into the presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. The binding of psychostimulants to their recognition sites on the DA transporter leads to an inhibition of DA transport and a subsequent rising of the dopamine contents in the synaptic cleft is ascribed to a mode of psychostimulation. Discovery of dopamine transporter inhibitors would be useful with regard to substituting for cocaine and minimizing its abuse. Recently, a number of fluoxetine analogues were synthesized, especially focusing on the substitution of N-methyl amine group through modifying the structure of the fluoxetine, N-methyl-3-[p-trifluoromethylphenoxy]-3-phenylpropylamine, widely used as an antidepressant. Among them, the pharmacological properties of FD-2, (R)-N-ethanol-3-(4-trifluorophenoxy)-3-phenyl propaneamine and FD-4, N-(R)-3-trifluorophenoxy-3-phenylpropane-imidazole with a higher affinity for the DA transporter were characterized in terms of dopamine transporter inhibition expecting for useful cocaine substitutes. Effects of the compounds on [H(3)]dopamine uptake, [I(125)]RTI-55 binding, and DA transporter-associated currents were examined with the ligand binding assays and voltage clamping technique in human embryonic kidney (HEK)-293 cells where the recombinant human DA transporter (hDAT) was stably expressed. Our results showed that (i) fluoxetine was potent in inhibiting both the uptake of [H(3)]DA (IC(50) = 0.21 +/- 0.032 mM, n = 3) and the [I(125)]RTI-55 binding (IC(50) = 0.23 +/- 0.012 mM, n = 10); (ii) N-methyl amine substituted fluoxetine analogues, FD-2 and FD-4 were equally or more potent than fluoxetine itself in terms of inhibition of [H(3)]DA uptake (IC50 FD-2: 0.077 +/- 0.0032 mM (n = 3); FD-4: 0.26 +/- 0.13 mM (n = 3), inhibition of [I(125)]RTI-55 binding, and reduction in DA transporter-associated currents, suggesting that these analogues could be a new class of dopamine transporter inhibitors.

Related Organizations
Keywords

Dopamine Plasma Membrane Transport Proteins, Reverse Transcriptase Polymerase Chain Reaction, Dopamine, Phenyl Ethers, Imidazoles, Transfection, Recombinant Proteins, Cell Line, Electrophysiology, Cocaine, Ethanolamines, Fluoxetine, Antidepressive Agents, Second-Generation, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average