Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology and Fertility of Soils
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Digital.CSIC
Article . 2018 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance

Authors: Eulogio J. Bedmar; Antonio Castellano-Hinojosa; Antonio Castellano-Hinojosa; Jesús González-López;

Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance

Abstract

The nitrous oxide and molecular N emissions from 5-cm length subsamples taken from 20-cm length sample corers containing eutric Cambisol soil fertilised either with urea, ammonium or nitrate for 1 year have been examined using gas chromatography. At the beginning of the incubation, the same N rate (260 kg N/ha) was added to the soil and kept constant during the experiment. The total abundance of the soil Bacteria and Archaea and that of nitrifiers and denitrifiers was estimated by quantitative PCR of the corresponding biotic variables 16S rRNA, amoA and napA, narG, nirK, nirS, norB, nosZI and nosZII genes. The abiotic variables dissolved oxygen, pH, exchangeable NH -N and NO -N contents and total C and total N were also analysed. None of the three fertilisers affected the total abundance of Bacteria and Archaea and nitrification was the main driver of nitrous oxide production in the 0- to 5-cm and 5- to 10-cm soil layers while denitrification was in the 10- to 15-cm and 15- to 20-cm soil horizons. Parallel to the reduction in the content of dissolved oxygen along the soil profile, there was a decrease in the total and relative abundance of the bacterial and archaeal amoA gene and an increase in the abundances of the denitrification genes, mainly in the 10- to 15-cm and 15- to 20-cm soil layers. A non-metric multidimensional scaling plot comparing the biotic and abiotic variables examined in each of the four 5-cm soil subsamples and the whole 20-cm sample showed a disparate effect of N fertilisation on N gas emissions and abundance of nitrifiers and denitrifiers bacterial and archaeal communities. This study was supported by the ERDF-cofinanced grant PEAGR2012-1968 from Consejería de Economía, Innovación y Ciencia (Junta de Andalucía, Spain) and the MINECO-CSIC Agreement RECUPERA 2020. ACH is recipient of a grant of MECD (FPU 2014/01633). Peer Reviewed

Country
Spain
Keywords

N gas emissions, Nitrification, N fertilisers, Arable top soil, qPCR, Gene abundance, Denitrification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 18
    download downloads 31
  • 18
    views
    31
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC1831
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
43
Top 10%
Top 10%
Top 10%
18
31
Green
bronze