Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Confinement of Mg−MgH2 Systems into Carbon Nanotubes Changes Hydrogen Sorption Energetics

Authors: Jian-Jie Liang; W.-C. Paul Kung;

Confinement of Mg−MgH2 Systems into Carbon Nanotubes Changes Hydrogen Sorption Energetics

Abstract

The density functional theory (DFT) method was used to study the effect of nanoconfinement on the energetics of Mg-MgH2 systems. Varying levels of loading of the Mg/MgH2 particles into a (10,10) carbon nanotube were examined, and the corresponding energetics were computed. A clear trend was observed that, as the level of loading increases (increasing confinement), the net energy change in the hydrogen sorption/desorption processes decreases to a significant level when the loading approaches the maximum. The confinement was found not to depend on the tube length of the confining nanotubes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%