Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalytic hydrodeoxygenation of Geodae-Uksae pyrolysis oil over Ni/desilicated HZSM-5

Authors: Kyung Bin Jung; Jungho Jae; Jungho Jae; Heejin Lee; Young-Kwon Park; Jong-Ki Jeon; Young-Min Kim; +1 Authors

Catalytic hydrodeoxygenation of Geodae-Uksae pyrolysis oil over Ni/desilicated HZSM-5

Abstract

Abstract This study investigates the effects of Ni impregnation and desilication on HZSM-5 for the hydrodeoxygenation (HDO) of biomass pyrolysis oil. Ni was impregnated in different supporting catalysts, HZSM-5 and desilicated HZSM-5 (DeHZSM-5), and used as catalysts for the catalytic HDO of Geodae-Uksae pyrolyzates. Between HZSM-5(30) and HZSM-5(80), which have different SiO2/Al2O3 ratios (30 and 80), HZSM-5(80) showed the higher desilication efficiency. Ni/DeHZSM-5(80) revealed higher performance on the production of hydrocarbons during the catalytic HDO of Geodae-Uksae pyrolyzates than Ni/HZSM-5(30) because of the increased hydrophobicity, hydrogen reduction efficiency, and mesoporosity of Ni/DeHZSM-5(80) enhanced by the desilication of HZSM-5. Ni/DeHZSM-5(80) also produced larger amounts of esters during the liquid-phase catalytic HDO of Geodae-Uksae pyrolysis oil using supercritical ethanol as a solvent in a high-pressure batch reactor. The two-step catalytic upgrading reaction via the catalytic pyrolysis of Geodae-Uksae over HZSM-5(30) followed by catalytic HDO reaction over Ni/DeHZSM-5(80) enhanced not only the formation of aromatic hydrocarbons and cycloalkanes but also decreased the coke yield on Ni/DeHZSM-5(80).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%