Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geographi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geographical Sciences
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three-dimensional modelling of soil organic carbon density and carbon sequestration potential estimation in a dryland farming region of China

Authors: Zhongxiang Sun; Huiqing Bai; Zhiqing Zhuo; Huichun Ye; Wenjiang Huang;

Three-dimensional modelling of soil organic carbon density and carbon sequestration potential estimation in a dryland farming region of China

Abstract

Soil organic carbon density (SOCD) and soil organic carbon sequestration potential (SOCP) play an important role in carbon cycle and mitigation of greenhouse gas emissions. However, the majority of studies focused on a two-dimensional scale, especially lacking of field measured data. We employed the interpolation method with gradient plane nodal function (GPNF) and Shepard (SPD) across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region (DFR) of China. The SOCP was estimated using a carbon saturation model. Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×106 and 25, respectively. The soil organic carbon storage (SOCS) of 40 cm and 20 cm soil layers were estimated as 22.28×1011 kg and 13.12×1011 kg simulated by GPNF method in DFR. The SOCP was estimated as 0.95×1011 kg considered as a carbon sink at the 20–40 cm soil layer. Furthermore, the SOCP was estimated as −2.49×1011 kg considered as a carbon source at the 0–20 cm soil layer. This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%