Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A defined co‐culture of Geobacter sulfurreducens and Escherichia coli in a membrane‐less microbial fuel cell

Authors: Enrico Marsili; Enrico Marsili; Radhakrishnan Mahadevan; Nicholas Bourdakos;

A defined co‐culture of Geobacter sulfurreducens and Escherichia coli in a membrane‐less microbial fuel cell

Abstract

ABSTRACTWastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater‐fed MFCs because of their complex microbial communities. Defined co‐culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory‐scale membrane‐less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co‐culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co‐culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m−2, compared to 63 mW m−2 from the co‐culture MFCs. Analysis of metabolites shows that succinate production in co‐culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co‐culture MFCs. Interestingly, pH adjustment is not required for co‐culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co‐culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. Biotechnol. Bioeng. 2014;111: 709–718. © 2013 Wiley Periodicals, Inc.

Country
Singapore
Keywords

Bioelectric Energy Sources, DRNTU::Science::Biological sciences::Microbiology, Hydrogen-Ion Concentration, Wastewater, Coculture Techniques, Glucose, :Science::Biological sciences::Microbiology [DRNTU], Escherichia coli, Geobacter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green