
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic Evaluation of Drought in CMIP6 Simulations

Probabilistic Evaluation of Drought in CMIP6 Simulations
AbstractAs droughts have widespread social and ecological impacts, it is critical to develop long‐term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference between observed and simulated drought characteristics. Results show that many simulations have less than error in reproducing the observed drought summary statistics. The hypothesis that simulations and observations are described by the same distribution cannot be rejected for more than of the grids based on our distance framework. No single model stood out as demonstrating consistently better performance over large regions of the globe. The variance in drought statistics among the simulations is higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and identify a subset of best‐performing models that are useful for impact assessments.
- University of California System United States
- University of Massachusetts Amherst United States
- University of Saskatchewan Canada
- Department of Earth and Space Sciences University of California (UCLA) United States
- National Center for Atmospheric Research | University Corporation for Atmospheric Research United States
Hellinger distance, 550, Environmental Science and Management, 612, precipitation, 551, Physical Geography and Environmental Geoscience, Atmospheric Sciences, GE1-350, CMIP6, QH540-549.5, reliability of climate models, Ecology, Climate change science, droughts, Climate Action, Environmental sciences, climate change, Earth Sciences, Hydrology, Research Article
Hellinger distance, 550, Environmental Science and Management, 612, precipitation, 551, Physical Geography and Environmental Geoscience, Atmospheric Sciences, GE1-350, CMIP6, QH540-549.5, reliability of climate models, Ecology, Climate change science, droughts, Climate Action, Environmental sciences, climate change, Earth Sciences, Hydrology, Research Article
17 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
