Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural and Forest Meteorology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Water response of ecosystem respiration regulates future projection of net ecosystem productivity in a semiarid grassland

Authors: Jianyang Xia; Xiaona Li; Xiaona Li; Yiqi Luo; Yiqi Luo; Kun Huang; Ensheng Weng; +4 Authors

Water response of ecosystem respiration regulates future projection of net ecosystem productivity in a semiarid grassland

Abstract

Abstract Recent evidences show that terrestrial biogeochemical models have large uncertainty in estimating climate-change effect on grassland net ecosystem productivity (NEP), which is defined as the difference between gross ecosystem photosynthesis (GEP) and respiration (ER). It remains unclear that whether GEP or ER limits the model capability to simulate NEP responses to climate change in semiarid grasslands. Given the surrogate CENTURY-type model is widely used for Earth system modeling, we investigated two of them (i.e., DAYCENT and TECO models) and examined which processes dominate their ability to capture the responses of NEP to experimental climate changes in a temperate steppe of northern China. During the simulation from 2006 to 2008, the two models captured the observed mean annual NEP in the control plots when they were validated by the observations from an adjacent eddy-flux tower. However, they failed to capture the treatment effects of experimental warming and increased precipitation on NEP because of the poor estimations of ER responses. DAYCENT model simulated a higher precipitation effect on ER (37.83%) and TECO model overestimated the warming effect on ER by 8.18%. The simulation of treatment effects on ER and therefore NEP can be improved by an optimized parameterization of the water-related decay functions for soil organic carbon (C). The simulated cumulative loss of total ecosystem C stock during 2010–2100 were decreased when the TECO model used experiment-fitted parameters (0.72 kg C m−2) instead of using the initial validation with eddy-flux data (0.96 kg C m−2). The ecosystem shifted from C sink to source at threshold of 435 mm of annual total precipitation. Our findings indicate that future projection of C cycle in semiarid grasslands could be improved by better understanding of water response of ecosystem respiratory processes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average