
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models

Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models
In the framework of the coordinated regional climate downscaling experiment (CORDEX), an ensemble of climate change projections for Africa has been created by downscaling the simulations of four global climate models (GCMs) by means of the consortium for small-scale modeling (COSMO) regional climate model (RCM) (COSMO-CLM, hereafter, CCLM). Differences between the projected temperature and precipitation simulated by CCLM and the driving GCMs are analyzed and discussed. The projected increase of seasonal temperature is found to be relatively similar between GCMs and RCM, although large differences (more than 1 °C) exist locally. Differences are also found for extreme-event related quantities, such as the spread of the upper end of the maximum temperature probability distribution function and, in turn, the duration of heat waves. Larger uncertainties are found in the future precipitation changes; this is partly a consequence of the inter-model (GCMs) variability over some areas (e.g. Sahel). However, over other regions (e.g. Central Africa) the rainfall trends simulated by CCLM and the GCMs show opposite signs, with CCLM showing a significant reduction in precipitation at the end of the century. This uncertain and sometimes contrasting behaviour is further investigated by analyzing the different models’ response to the land–atmosphere interaction and feedback. Given the large uncertainty associated with inter-model variability across GCMs and the reduced spread in the results when a single RCM is used for downscaling, we strongly emphasize the importance of exploiting fully the CORDEX-Africa multi-GCM/multi-RCM ensemble in order to assess the robustness of the climate change signal and, possibly, to identify and quantify the many sources of uncertainty that still remain.
Atmospheric Science, info:eu-repo/classification/ddc/550, 550, CORDEX-Africa, ddc:550, COSMO-CLM, Regional climate model, Earth sciences, Land–atmosphere interaction, GCMs, CMIP5
Atmospheric Science, info:eu-repo/classification/ddc/550, 550, CORDEX-Africa, ddc:550, COSMO-CLM, Regional climate model, Earth sciences, Land–atmosphere interaction, GCMs, CMIP5
7 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).147 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
