Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Soluble carbohydrates and relative growth rates in chloro‐, cyano‐ and cephalolichens: effects of temperature and nocturnal hydration

Authors: Yngvar Gauslaa; Knut Asbjørn Solhaug; Azharul Alam;

Soluble carbohydrates and relative growth rates in chloro‐, cyano‐ and cephalolichens: effects of temperature and nocturnal hydration

Abstract

Summary This growth chamber experiment evaluates how temperature and humidity regimes shape soluble carbohydrate pools and growth rates in lichens with different photobionts. We assessed soluble carbohydrates, relative growth rates (RGRs) and relative thallus area growth rates (RTAGRs) in Parmelia sulcata (chlorolichen), Peltigera canina (cyanolichen) and Peltigera aphthosa (cephalolichen) cultivated for 14 d (150 μmol m−2 s−1; 12‐h photoperiod) at four day : night temperatures (28 : 23°C, 20 : 15°C, 13 : 8°C, 6 : 1°C) and two hydration regimes (hydration during the day, dry at night; hydration day : night). The major carbohydrates were mannitol (cephalolichen), glucose (cyanolichen) and arabitol (chlorolichen). Mannitol occurred in all species. During cultivation, total carbohydrate pools decreased in cephalo‐/cyanolichens, but increased in the chlorolichen. Carbohydrates varied less than growth with temperature and humidity. All lichens grew rapidly, particularly at 13 : 8°C. RGRs and RTAGRs were significantly higher in lichens hydrated for 24 h than for 12 h. Strong photoinhibition occurred in cephalo‐ and cyanolichens kept in cool dry nights, resulting in positive relationships between RGR and dark‐adapted photosystem II (PSII) efficiency (Fv/Fm). RGR increased significantly with the photobiont‐specific carbohydrate pools within all species. Average RGR peaked in the chlorolichen lowest in total and photobiont carbohydrates. Nocturnal hydration improved recovery from photoinhibition and/or enhanced conversion rates of photosynthates into growth.

Related Organizations
Keywords

Chlorophyll, Lichens, Parmeliaceae, Temperature, Carbohydrate Metabolism, Humidity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
bronze
Related to Research communities