Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solidified Self nano-emulsifying Drug Delivery System of Rosuvastatin Calcium to Treat diet-induced Hyperlipidemia in rat: In Vitro and In Vivo Evaluations

Authors: Priya Ranjan Prasad Verma; Mohd Neyaz Ahsan;

Solidified Self nano-emulsifying Drug Delivery System of Rosuvastatin Calcium to Treat diet-induced Hyperlipidemia in rat: In Vitro and In Vivo Evaluations

Abstract

The present work focuses on preparing a solidified self nano-emulsifying drug-delivery system (S-SNEDDS) to improve the in vitro dissolution of rosuvastatin and to evaluate its antihyperlipidemic activity. Powder flow characterization demonstrated good flow properties. The drug-excipient compatibility study indicates no possible interaction. Transmission electron microscopy and scanning electron microscopy revealed nonaggregated, spherical nanosized globules. The globule-size analysis revealed droplet size in nanorange (∼100 nm). S-SNEDDS exhibited improved drug release (∼95%) as compared with rosuvastatin powder (51.89%) at 60 min. Upon antihyperlipidemic study, S-SNEDDS after 14th day of treatment revealed significant reduction in cholesterol (33.47%), triglycerides (40.77%) and atherogenic index (81.28%), while high-density lipoprotein (118.43%) was increased. The study indicates the great potential of S-SNEDDS for improving oral absorption of such poorly soluble drugs and their pharmacodynamic efficacy.

Keywords

Biological Availability, Hyperlipidemias, Diet, Rats, Drug Liberation, Drug Delivery Systems, Solubility, Animals, Nanoparticles, Emulsions, Particle Size, Powders, Rosuvastatin Calcium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze