
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stably stratified canopy flow in complex terrain

Stably stratified canopy flow in complex terrain
Abstract. The characteristics of stably stratified canopy flows in complex terrain are investigated by employing the Renormalized Group (RNG) k-ε turbulence model. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier–Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by a few multi-tower advection experiments can be produced by this numerical simulation, such as: (1) unstable layer in the canopy, (2) super-stable layer associated with flow decoupling in deep canopy and near the top of canopy, (3) upward momentum transfer in canopy, and (4) large buoyancy suppression and weak shear production in strong stability.
- CUNY College of Staten Island United States
- Queens University of Charlotte United States
- The Graduate Center, The City University of New York United States
- CUNY Queens College United States
- CUNY College of Staten Island United States
Chemistry, Meteorology and Atmospheric Sciences, Physics, QC1-999, Meteorologi och atmosfärsvetenskap, QD1-999
Chemistry, Meteorology and Atmospheric Sciences, Physics, QC1-999, Meteorologi och atmosfärsvetenskap, QD1-999
6 Research products, page 1 of 1
- 1999IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
