Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal regulation of renewable supply for electrolytic hydrogen

Authors: Zeyen, Elisabeth; Riepin, Iegor; Brown, Tom;

Temporal regulation of renewable supply for electrolytic hydrogen

Abstract

Electrolytic hydrogen produced using renewable electricity can help lower carbon dioxide emissions in sectors where feedstocks, reducing agents, dense fuels or high temperatures are required. This study investigates the implications of various standards being proposed to certify that the grid electricity used is renewable. The standards vary in how strictly they match the renewable generation to the electrolyser demand in time and space. Using an energy system model, we compare electricity procurement strategies to meet a constant hydrogen demand for selected European countries in 2025 and 2030. We compare cases where no additional renewable generators are procured with cases where the electrolyser demand is matched to additional supply from local renewable generators on an annual, monthly or hourly basis. We show that local additionality is required to guarantee low emissions. For the annually and monthly matched case, we demonstrate that baseload operation of the electrolysis leads to using fossil-fuelled generation from the grid for some hours, resulting in higher emissions than the case without hydrogen demand. In the hourly matched case, hydrogen production does not increase system-level emissions, but baseload operation results in high costs for providing constant supply if only wind, solar and short-term battery storage are available. Flexible operation or buffering hydrogen with storage, either in steel tanks or underground caverns, reduces the cost penalty of hourly versus annual matching to 7–8%. Hydrogen production with monthly matching can reduce system emissions if the electrolysers operate flexibly or the renewable generation share is large. The largest emission reduction is achieved with hourly matching when surplus electricity generation can be sold to the grid. We conclude that flexible operation of the electrolysis should be supported to guarantee low emissions and low hydrogen production costs.

Related Organizations
Keywords

electrolysis, decarbonisation, green hydrogen, regulation, PPA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 87
    download downloads 36
  • 87
    views
    36
    downloads
    Data sourceViewsDownloads
    ZENODO8736
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
87
36
Green