Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid

Authors: Cha, Daegeun; Ha, Hyo Seok; Lee, Sung Kuk;

Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid

Abstract

Poly(3-hydroxybutyrate), a short-chain-length polyhydroxyalkanoate (scl-PHA), is considered as a good alternative to conventional synthetic plastics. However, various biopolymers with diverse characteristics are still in demand. In this study, four different types of scl-PHA were successfully produced by engineering levulinic acid (LA) utilization metabolic pathway and expressing heterologous PHA synthase (PhaEC), acetyl-CoA acetyltransferase (PhaA), and acetyl-CoA reductase (PhaB) in Pseudomonas putida EM42. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], poly(3-hydroxyvalerate-co-4-hydroxyvalerate) [P(3HV-co-4HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [P(3HB-co-3HV-co-4HV)] were produced by the natural LA pathway, poly(4-hydroxyvalerate) by lvaAB-deleted LA pathway, and P(3HV-co-4HV) and P(3HB-co-3HV-co-4HV) with relatively high 3HV by fadB-deleted LA pathway. PHA with different monomer fractions could be produced using different PHA synthases. Scl-PHA contents reached approximately 40% of cell dry mass under non-optimized flask culture. This demonstrates that the LA catabolic pathway may be a good alternative route to provide monomers for the production of various types of PHA.

Country
Korea (Republic of)
Keywords

Metabolic Engineering, Pseudomonas putida, Polyesters, Polyhydroxyalkanoates, Levulinic Acids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 1%
Top 10%
Top 10%