Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Modeling
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sequence analysis, in silico modeling and docking studies of Caffeoyl CoA-O-methyltransferase of Populus trichopora

Authors: Navneet Phogat; Krishna Kishore Inampudi; Vaibhav Vindal; Vikash Kumar; Nirmal K. Prasad;

Sequence analysis, in silico modeling and docking studies of Caffeoyl CoA-O-methyltransferase of Populus trichopora

Abstract

Caffeoyl coenzyme A-O-methyltransferases (CCoAOMTs) which are characterized under class I plant OMTs, methylates CoA thioesters, with an in vitro kinetic preference for caffeoyl CoA. CCoAOMTs exhibit association with lignin biosynthesis by showing a prime role in the synthesis of guaiacyl lignin and providing the substrates for synthesis of syringyl lignin. The sequence analysis of CCoAOMT from Populus trichopora exhibits 58 nucleotide substitutions, where transitions overcome transversions. Validation of homology models of both CCoAOMT1 and 2 isoforms reveals that 92.4% and 96% residues are falling in the most favorable region respectively in the Ramachandran plot, indicating CCoAOMT2 as the more satisfactory model, and the overall quality factor of both isoforms is 98.174. The structural architecture analysis is showing very good packing of residues similar to protein crystal structures data. The active site residues and substrate-product interactions showed that CCoAOMT2 possesses more affinity toward caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapoyl CoA than CCoAOMT1, therefore it exist in a more active conformation. The affinity of CCoAOMT2 with feruloyl CoA is highest among all the affinities of both CCoAOMT isoforms with their substrates and products. This information has potential implications to understand the mechanism of CCoAOMT related enzymatic reactions in Populus trichopora, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.

Keywords

Models, Molecular, Sequence Homology, Amino Acid, Molecular Sequence Data, Computational Biology, Hydrogen Bonding, Methyltransferases, Substrate Specificity, Isoenzymes, Populus, Amino Acid Substitution, Sequence Analysis, Protein, Catalytic Domain, Biocatalysis, Amino Acid Sequence, Sequence Alignment, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average