Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conversion of Fuel-N into HCN and NH3 During the Pyrolysis and Gasification in Steam: A Comparative Study of Coal and Biomass

Authors: Fujun Tian; Lachlan James McKenzie; Jianglong Yu; Jun Ichiro Hayashi; Chun-Zhu Li;

Conversion of Fuel-N into HCN and NH3 During the Pyrolysis and Gasification in Steam: A Comparative Study of Coal and Biomass

Abstract

Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification of coal and biomass in steam were compared using fluidized-bed/fixed-bed and two-stage fluidized-bed/tubular reactors. During the pyrolysis and gasification of coal and biomass in steam, the thermal cracking of volatile-N was the main route for the formation of HCN while a small amount of HCN was formed from the breakdown of relatively unstable N-containing structures in char. Our results indicate that once the fuel-N in both biomass and coal is condensed/polymerized into the solid-phase char-N during the gasification in steam, the main nitrogen-containing gaseous product from char-N would be NH3. However, the thermal-cracking/reforming of volatile-N constitutes an additional important route of NH3 formation during the gasification of biomass (e.g., cane trash) in steam while this route is negligible for the gasification of coal. The selectivity of char-N toward HCN and NH3 is largely controlled by char-N stability and/or the avai...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 1%
Top 10%
Top 10%