
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AN EVALUATION OF THE USE OF SPECTRAL PROPERTIES IN MONITORING STRESS IN MARINE MACROALGAE
doi: 10.24382/3805 , 10.24382/2233
handle: 10026.1/2706
AN EVALUATION OF THE USE OF SPECTRAL PROPERTIES IN MONITORING STRESS IN MARINE MACROALGAE
The overall aim of this thesis was to assess the potential of developing specific quantifiable assays of pollutant damage based on changes on the in vivo optical properties of macroalgae, applicable to laboratory and remote systems. The green macroalgae, E.intestinalis, was exposed to selected trace metals (copper and zinc), triazine herbicides (Irgarol 1051 and atrazine) and a series of alcohols (n = 1 - 9). The algal in vivo spectral properties, measured using a spectrophotometer fitted with an integrating sphere, determined changes due to exposure, and results were compared with established methods, including growth and fluorescence, to assess algal health status. Each pollutant, except zinc, had a significant (P < 0.05) effect on in vivo spectral properties at the range of concentrations used. The results indicated that the technique has potential to identify the algal systems affected by the pollutant, as signatures obtained appeared to indicate whether change was due to structure or pigments. The technique was sensitive, repeatable, and could detect individual pollutants in a copper/Irgarol 1051 mixture. The results were mathematically interpreted to provide ratios, individual wavelengths, sensitivity figures, web diagrams and QSARs to highligh.t differences between pollutant effect. The QSAR, obtained from E.intestinalis exposed to a series of alcohols, had a R2 value of0.9682 using in vivo absorptance at 680 nm and Log Kow, which corresponds with published values of 0.97 using ion leakage with the same species. However, the technique of in vivo spectral properties has the advantage of being non-invasive. Samples of E.intestinalis were collected from different field sites and their in vivo spectral responses could be grouped according to potential pollutants to which they had been exposed. In addition, the potential of extending the technique for use in remote sensing is discussed. It was concluded that the technique of monitoring in vivo spectral properties is an appropriate biomonitor to add to the expanding range of current biomonitors.
Merged with duplicate record 10026.1/603 on 28.02.2017 by CS (TIS)
- Plymouth University United Kingdom
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
