Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea

Authors: Xiaohua Lu; Yujiao Xie; Haifeng Dong; Xiaoyan Ji; Suojiang Zhang;

Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea

Abstract

To study the effect of water on the properties of choline chloride (ChCl)/urea mixtures (1:2 on a molar basis), the density and viscosity of ChCl/urea (1:2) with water were measured at temperatures from 298.15 K to 333.15 K at atmospheric pressure, the CO2 solubility in ChCl/urea (1:2) with water was determined at 308.2 K, 318.2 K, and 328.2 K and at pressures up to 4.5 MPa. The results show that the addition of water significantly decreases the viscosity of ChCl/urea (1:2), whereas the effects on their density and CO2 solubility are much weaker. The CO2 solubility in ChCl/urea (1:2) with water was represented with the Nonrandom-Two-Liquid Redlich–Kwong (NRTL-RK) model. The excess molar volume and excess molar activation energy were further determined. The CO2 absorption enthalpy was calculated and dominated by the CO2 dissolution enthalpy, and the magnitude of the CO2 dissolution enthalpy decreases with the increase of water content.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    191
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
191
Top 1%
Top 10%
Top 1%