
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Advanced Lithium–Sulfur Batteries Enabled by a Bio‐Inspired Polysulfide Adsorptive Brush

Advanced Lithium–Sulfur Batteries Enabled by a Bio‐Inspired Polysulfide Adsorptive Brush
Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium–sulfur batteries for next‐generation energy storage. To trap and re‐utilize the polysulfides without hampering lithium ion conductivity, a bio‐inspired, brush‐like interlayer consisting of zinc oxide (ZnO) nanowires and interconnected conductive frameworks is proposed. The chemical effect of ZnO on capturing polysulfides has been conceptually confirmed, initially by using a commercially available macroporous nickel foam as a conductive backbone, which is then replaced by a free‐standing, ultra‐light micro/mesoporous carbon (C) nanofiber mat for practical application. Having a high sulfur loading of 3 mg cm−2, the sulfur/multi‐walled carbon nanotube composite cathode with a ZnO/C interlayer exhibits a reversible capacity of 776 mA h g−1 after 200 cycles at 1C with only 0.05% average capacity loss per cycle. A good cycle performance at a high rate can be mainly attributed to the strong chemical bonding between ZnO and polysulfides, fast electron transfer, and an optimized ion diffusion path arising from a well‐organized nanoarchitecture. These results herald a new approach to advanced lithium–sulfur batteries using brush‐like chemi‐functional interlayers.
- University of Cambridge United Kingdom
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
conductive frameworks, zinc oxide nanowires, polysulfides, brush-like interlayer, lithium-sulfur batteries
conductive frameworks, zinc oxide nanowires, polysulfides, brush-like interlayer, lithium-sulfur batteries
12 Research products, page 1 of 2
- 2013IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).131 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
