
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2

Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2
Abstract CO2 capture from post-combustion flue gas mixture (CO2/N2:15/85) is challenging and requires adsorbents with high capacity and high selectivity toward CO2. Our work validated the potential of transition metal cation-exchanged SSZ-13 zeolites for efficient CO2 capture, as evaluated by unary static isothermal adsorption and binary dynamic column breakthrough experiments as well as predicted performance in pressure/vacuum swing adsorption (P/VSA) process. Among the investigated transition metals (Co(II), Ni(II), Zn(II), Fe(III), Cu(II), Ag(I), La(III), and Ce(III)) exchanged SSZ-13, Co(II)/SSZ-13 and Ni(II)/SSZ-13 showed the highest CO2 uptake (4.49 and 4.45 mmol/g, respectively) and superior selectivity of CO2 over N2 (52.55 and 42.61, respectively) at 273 K and 1 atm. We attribute such outstanding separation performance to the Pi backdonation exclusively formed between CO2 and transition metal cation sites. This demonstrates a new approach of developing adsorbents for CO2 capture in the real-world industrial processes.
- Australian Synchrotron Australia
- City University of Hong Kong China (People's Republic of)
- Australian Synchrotron Australia
- City University of Hong Kong, Shenzhen Research Institute China (People's Republic of)
5 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).92 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
