
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental study of high altitude effect on heat release rates of pool fires using calorimeters

Experimental study of high altitude effect on heat release rates of pool fires using calorimeters
With the aid of same configured calorimeters as dimensions of 40% of that in ISO 9705 in Hefei (24 m, 100.8 kPa) and Lhasa (3650 m, 64 kPa), the influence of high altitude on heat release rate and combustion efficiency were investigated. Two groups of liquid pool fires of moderate sizes (D = 0.15, 0.25 m) with fuel level maintaining system were tested at two sites, respectively. Typical fuels with different sooting levels, i.e., N-heptane and Jet-A, were selected. The ambient air pressure effects were introduced by modifying the standard calculation method of heat release rate in ISO 9705. Experimental results indicated that the dimensionless burning intensity in the quasi-steady stage for both fuels could be accorded to pressure modeling with acceptable accuracy. And it could be correlated with radiation modeling well for Jet-A, while that of n-heptane failed and this may be explained by the flame convection feedback which could not be neglected for moderate sooty fuel of moderate sizes. The combustion efficiency at high altitude is slightly higher than that at atmospheric pressure, and it will gradually increase with the decreasing pool dimension regardless of the ambient pressure.
- City University of Hong Kong China (People's Republic of)
- University of Science and Technology of China China (People's Republic of)
5 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
