
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mediterranean Precipitation Response to Greenhouse Gases and Aerosols
doi: 10.5194/acp-2018-56
Mediterranean Precipitation Response to Greenhouse Gases and Aerosols
Abstract. Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare Mediterranean precipitation responses to individual forcing agents in a set of state-of-the-art global climate models (GCMs). Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean, and that precipitation is more sensitive to black carbon (BC) forcing than to well-mixed greenhouse gases (WMGHGs) or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31 ± 17 %) of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs whereas global scattering sulfate aerosols have negligible impacts. The results from this study suggest that future BC emissions may significantly affect regional water resources, agricultural practices, ecosystems, and the economy in the Mediterranean region.
- Kyushu University Japan
- University of Leeds Leeds Symplectic United Kingdom
- CICERO Center for International Climate and Environmental Research Norway
- Columbia University United States
- Canadian Centre for Climate Modelling and Analysis Canada
7 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
