Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
PLANT PHYSIOLOGY
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linamarase Expression in Cassava Cultivars with Roots of Low- and High-Cyanide Content

Authors: Maria A Santana; Juan Matehus; Valeria Vásquez; Rafael Rangel Aldao;

Linamarase Expression in Cassava Cultivars with Roots of Low- and High-Cyanide Content

Abstract

Abstract This paper reports the expression and localization of linamarase in roots of two cassava (Manihot esculentaCrantz) cultivars of low and high cyanide. Two different patterns of linamarase activity were observed. In the low-cyanide type, young leaves displayed very high enzyme activity during the early plant growing stage (3 months), whereas in root peel, the activity increased progressively to reach a peak in 11-month-old plants. Conversely, in the high-cyanide cultivar (HCV), root peel linamarase activity decreased during the growth cycle, whereas in expanded leaves linamarase activity peaked in 11-month-old plants. The accumulation of linamarin showed a similar pattern in both cultivars, although a higher concentration was always found in the HCV. Linamarase was found mainly in laticifer cells of petioles and roots of both cultivars with no significant differences between them. At the subcellular level, there were sharp differences because linamarase was found mainly in the cell walls of the HCV, whereas in the low-cyanide cultivar, the enzyme was present in vacuoles and cell wall of laticifer cells. Reverse transcriptase-PCR on cassava tissues showed no expression of linamarase in cassava roots, thus, the transport of linamarase from shoots to roots through laticifers is proposed.

Keywords

Cyanides, Manihot, beta-Glucosidase, Immunoblotting, Fluorescent Antibody Technique, Biological Transport, Plant Roots, Gene Expression Regulation, Enzymologic, Plant Leaves, Cell Wall, Gene Expression Regulation, Plant, Nitriles, Vacuoles, RNA, Messenger, Microscopy, Immunoelectron

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Average
hybrid