Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asia-Pacific Journal...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Asia-Pacific Journal of Chemical Engineering
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal conversion behavior and nitrogen‐containing gas products evolution during co‐pyrolysis of cow manure and coal: A thermal gravimetric analyzer/differential scanning calorimetry–mass spectrometer investigation

Authors: Weiguang Su; Jiaofei Wang; Yonghui Bai; Guangsuo Yu; Guangsuo Yu; Meng Ma; Fuchen Wang; +1 Authors

Thermal conversion behavior and nitrogen‐containing gas products evolution during co‐pyrolysis of cow manure and coal: A thermal gravimetric analyzer/differential scanning calorimetry–mass spectrometer investigation

Abstract

AbstractThe kinetics and thermal behaviors of cow manure (CM) and Meihuajing bituminous coal (MHJ) blending from room temperature to 950°C were investigated by thermal gravimetric analyzer (TGA) coupled with differential scanning calorimetry (DSC) and mass spectrometer (MS). TG curves show that the high heating rate accelerates thermal decomposition rate, and the position of differential thermal gravity (DTG) peaks shifts to a higher temperature. Owing to the heat transfer limitation phenomenon, the residual weight of CM is only 40.38% with the heating rate of 1°C/min in comparison with other heating rate. DSC takes more time to reach a steady state than TGA. Gaseous evolution curves of HCN and NH3 were obtained during the pyrolysis of blends based on TG–MS experiments. With the increased heating rate, the emissions increased a lot due to the secondary reaction of volatiles. The Eα of 1C1M obtained using Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), Friedman, and Kissinger methods is within 124.58–317.18, 121.97–321.11, 150.28–331.64, and 209.26 kJ/mol, respectively. The kinetic parameters calculated based on four model‐free kinetic modeling methods shows good agreement. And the thermodynamic parameters were obtained and discussed under different conversion rates. This work is greatly important to understand the co‐prolysis mechanism of CM and coal and to design the pyrolysis reactors.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%