Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 1979 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of cell lines showing growth control isolated from both the wild type and a leucyl‐tRNA synthetase mutant of chinese hamster ovary cells

Authors: C. P. Stanners; Jeffrey W. Pollard;

Characterization of cell lines showing growth control isolated from both the wild type and a leucyl‐tRNA synthetase mutant of chinese hamster ovary cells

Abstract

AbstractThe genetic approach to the problem of cellular growth control is limited by the availability of recessive mutations in cell lines which are capable of growth control in vitro. The CHO cell line has yielded many recessive mutations including, for example, tsH1, a temperature sensitive leucyl‐tRNA synthetase mutant, which under non‐permissive conditions rapidly shuts down protein synthesis and generates uncharged tRNA. Both CHO and tsH1 are transformed, however, and do not respond to environmental stimuli with the coordinated regulation of macromolecular processes observed in normal diploid fibroblasts. We describe here the isolation and characterization of growth control revertants obtained from both CHOwt and tsH1. The best of these GRC+L‐73, isolated from tsH1, had 20 chromosomes, one less than tsH1, had normal fibroblastic morphology, would not grow in suspension, required high serum concentrations for growth, grew to relatively low cell densities at saturation in monolayer culture and showed a stationary phase characterized by arrest in a G1‐like state with maintenace of high viability for several weeks. It is expected that this line as well as a ts revertant GRC+LR‐73 will greatly facilitate the genetic investigation of growth control and, in particular, will help to elucidate the role of uncharged tRNA in the regulation of macromolecular synthesis in mammalian cells.

Keywords

Ovary, Transplantation, Heterologous, Temperature, Mice, Nude, Neoplasms, Experimental, Cell Line, Amino Acyl-tRNA Synthetases, Mice, Cell Transformation, Neoplastic, Cricetinae, Mutation, Animals, Female, Leucine-tRNA Ligase, Cell Division, Neoplasm Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 1%
Top 10%