
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Chemistry of the consumption and excretion of the bumphead parrotfish (Bolbometopon muricatum), a coral reef mega-consumer

Chemistry of the consumption and excretion of the bumphead parrotfish (Bolbometopon muricatum), a coral reef mega-consumer
Bolbometopon muricatum are ecologically unique mega-consumers in coral reef ecosystems. They primarily divide their dietary intake between living scleractinian corals and coral rock, a substrate richly colonized by non-coral biota. Here we examine how the chemical, structural, and energetic content of these two main classes of forage material may influence B. muricatum feeding behavior and selectivity. We then also examine nutrient content, pH, and alkalinity of the carbonate-rich feces of B. muricatum as a step toward understanding how B. muricatum defecation could affect reef nutrient dynamics and localized seawater chemistry. Our results suggest that by most measures, coral rock constitutes a richer food source than living corals, exhibiting higher levels of eight biologically relevant elements, and containing approximately three times greater caloric value than living corals. Additionally, the two forage types also presented distinct mineralogy, with the coral rock resembling a Mg-enriched carbonate phase in contrast to the primarily aragonitic live corals. Despite the fact that individual B. muricatum excrete tons of macerated coral annually, the low measured concentrations of N and P in feces suggest that this excretion may have relatively minor effects of reef macronutrient budgets. We also observed negligible local-scale impacts of B. muricatum feces on seawater pH and alkalinity. The approaches applied here integrate perspectives from marine biogeochemistry, materials science, and ecology. Collectively, these results provide preliminary insight into how reef chemistry could shape foraging of this dominant and vulnerable coral reef consumer and how it, in turn, might affect the chemistry of these reefs.
- University of Georgia Georgia
- Miami University United States
- Miami University United States
- Carnegie Institution for Science United States
- University System of Ohio United States
24 Research products, page 1 of 3
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
