Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Coral Reefsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Coral Reefs
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemistry of the consumption and excretion of the bumphead parrotfish (Bolbometopon muricatum), a coral reef mega-consumer

Authors: E. Grace Goldberg; Ted K. Raab; Paul Desalles; Amy A. Briggs; Robert B. Dunbar; Frank J. Millero; Ryan J. Woosley; +3 Authors

Chemistry of the consumption and excretion of the bumphead parrotfish (Bolbometopon muricatum), a coral reef mega-consumer

Abstract

Bolbometopon muricatum are ecologically unique mega-consumers in coral reef ecosystems. They primarily divide their dietary intake between living scleractinian corals and coral rock, a substrate richly colonized by non-coral biota. Here we examine how the chemical, structural, and energetic content of these two main classes of forage material may influence B. muricatum feeding behavior and selectivity. We then also examine nutrient content, pH, and alkalinity of the carbonate-rich feces of B. muricatum as a step toward understanding how B. muricatum defecation could affect reef nutrient dynamics and localized seawater chemistry. Our results suggest that by most measures, coral rock constitutes a richer food source than living corals, exhibiting higher levels of eight biologically relevant elements, and containing approximately three times greater caloric value than living corals. Additionally, the two forage types also presented distinct mineralogy, with the coral rock resembling a Mg-enriched carbonate phase in contrast to the primarily aragonitic live corals. Despite the fact that individual B. muricatum excrete tons of macerated coral annually, the low measured concentrations of N and P in feces suggest that this excretion may have relatively minor effects of reef macronutrient budgets. We also observed negligible local-scale impacts of B. muricatum feces on seawater pH and alkalinity. The approaches applied here integrate perspectives from marine biogeochemistry, materials science, and ecology. Collectively, these results provide preliminary insight into how reef chemistry could shape foraging of this dominant and vulnerable coral reef consumer and how it, in turn, might affect the chemistry of these reefs.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average